TD 3: Projecteurs et symétries (Indications)

Indications pour l'exercice 1:

- 1. Le sens direct découle de la définition, il suffit de calculer $p^2(x)$. Penser ensuite à écrire x = x p(x) + p(x) pour tout vecteur x de E pour le sens réciproque.
- 2. Utiliser le fait que si p est un projecteur, alors c'est la projection sur Im(p) parallèlement à Ker(p).
- 3. Le sens direct découle de la définition, il suffit de calculer $s^2(x)$. Penser ensuite à écrire $x = \frac{1}{2}(x s(x)) + \frac{1}{2}(x + s(x))$ pour tout vecteur x de E pour le sens réciproque.

Indications pour l'exercice 2:

- 1. Utiliser la caractérisation $p^2 = p$ et les propriétés des projecteurs.
- 2. Utiliser la caractérisation $s^2 = \text{Id}_E$ et les propriétés des symétries.

Indications pour l'exercice 3:

On peut montrer par récurrence que pour tout entier $p, 1 \le p \le n-1$, $\dim(H_1 \cap \cdots \cap H_p) \ge n-p$ si $(H_1, ..., H_{n-1})$ est une famille d'hyperplans.

Indications pour l'exercice 4:

- 1. Raisonner par double inclusion, revenir aux définitions.
- 2. Utiliser la caractérisation :

$$f(E_1) + \cdots + f(E_n) = f(E_1) \oplus \cdots \oplus f(E_n) \iff \forall (y_1, ..., y_n) \in f(E_1) \times \cdots \times f(E_n), y_1 + \cdots + y_n = 0 \Rightarrow y_1 = \cdots = y_n = 0$$

- 3. Rappel : $x \in f^{-1}(A) \iff f(x) \in A$.
- 4. Trouver par exemple deux droites vectorielles F_1 et F_2 de \mathbb{R}^2 en somme directe et une application $f \in \mathcal{L}(\mathbb{R}^2)$ telle que $f^{-1}(F_1) = \{0\}$ et $f^{-1}(F_2) = \{0\}$.

Indications pour l'exercice 5:

- 1. Raisonner par analyse synthèse pour montrer que toute fonction de E s'écrit comme somme d'une fonction de F et d'une fonction de G.
- 2. Utiliser la décomposition trouvée à la question précédente pour exprimer directement p(f) en fonction de f.

Indications pour l'exercice 6:

- 1. Raisonner par analyse synthèse pour montrer que tout vecteur de E s'écrit comme somme d'un vecteur de F et d'un vecteur de G.
- 2. Utiliser la décomposition trouvée à la question précédente pour exprimer directement s(x, y, z) en fonction de (x, y, z).

Indications pour l'exercice 7 :

- 1. (a) F est l'ensemble des solutions d'un sytème d'1 équation à 2n inconnues.
 - (b) La réponse précédente peut donner la réponse, sinon on peut voir F aussi comme noyau d'une application linéaire, ou bien encore écrire directement une base de F.
- 2. Montrer que F et G sont en somme directe puis raisonner sur les dimensions.
- 3. Décomposer x dans $F \oplus G$ par analyse-synthèse, les réponses à 3a) et 3b) sont ensuite immédiates en appliquant les définitions.

Indications pour l'exercice 8 :

- 1. Comme d'habitude une analyse-synthèse fera l'affaire
- 2. Reprendre la décomposition de la question précédente.

Indications pour l'exercice 9 :

- 1. Routine
- 2. Montrer que la somme est directe et utiliser la formule de Grassmann pour montrer l'égalité des dimensions. Pour déterminer la dimension de Ker(u) on peut par exemple montrer que u est surjective.

Indications pour l'exercice 10 :

Rappel: F est stable par u si pour tout $x \in F$, $u(x) \in F$. Remarque: $u(x) \in \text{Ker}(s - \text{Id}) \iff s(u(x)) = u(x)$.

Indications pour l'exercice 11:

Choisir une base de E dans laquelle la matrice représentative de s est diagonale.

Indications pour l'exercice 12:

- 1. Utiliser la caractérisation $r^2=r$ en remarquant que $\mathrm{Im}(p)\subset\mathrm{Ker}(q)\Longleftrightarrow q\circ p=0$
- 2. Raisonner par double implication en utilisant bien toutes les hypothèses. Comme r est un projecteur, montrer que $x \in \text{Im}(r)$ revient à montrer que r(x) = x.

Indications pour l'exercice 13:

- 1. Le théorème du rang suffit.
- 2. L'hypothèse « $g \circ f$ est de rang p » et le résultat de la question précédente suffisent pour obtenir l'égalité des dimensions dans la première égalité. La deuxième vient ensuite immédiatement grâce au théorème du rang.
- 3. Utiliser le fait que pour un projecteur $q, x \in \text{Im}(q) \iff q(x) = x$.
- 4. Utiliser le résultat précédent et l'injectivité de g.

Indications pour l'exercice 14:

- 1. Développer en utilisant $a^2 = b^2 = \mathrm{Id}_E$. Attention : $a \circ b \neq b \circ a$ a priori.
- 2. La question précédente donne un lien entre $(a+b)\circ (a-b), (a-b)\circ (a+b)$ et $(a\circ b-b\circ a)$.
- 3. Attention: si $f, g \in \mathcal{L}(E), y \in \text{Im}(f) \cap \text{Im}(g) \iff \exists x_1, x_2 \in E, y = f(x_1) \text{ et } y = g(x_2).$

Indications pour l'exercice 15:

- 1. Pour déterminer s(s(P(X)), poser Q(X) = s(P(X)) = P(1-X) puis écrire s(Q(X)) = Q(1-X).
- 2. La courbe représentative d'une fonction f définie sur \mathbb{R} est symétrique par rapport à la droite d'équation x=a si f(a-x)=f(a+x) pour tout $x\in\mathbb{R}$.
- 3. Si f est une fonction définie sur \mathbb{R} et que $g: x \mapsto f(x+a)$, alors la courbe représentative de g dans un repère $(O, \overrightarrow{i}, \overrightarrow{j})$ est le translaté de la courbe représentative de f par la translation de vecteur -a \overrightarrow{i} .
- 4. Un polynôme est nul si et seulement si tous ses coefficients sont nuls.
- 5. Un automorphisme envoie une base de E sur une base de E. L'ensemble des polynômes de $\mathbb{R}_n[X]$ qui définissent des fonctions paires est un sous espace vectoriel de $\mathbb{R}_n[X]$ dont une base est $(1, X^2, X^4, \dots, X^{2E(n/2)})$.
- 6. Montrer de la même façon que $P(1-X) = -P(X) \iff P(X+\frac{1}{2})$ définit une fonction impaire, la suite est très similaire au cas précédent.

Indications pour l'exercice 16:

- 1. Routine
- 2. Attention il ne suffit pas de montrer que $Spec(s) \subset \{-1,1\}$.

- 3. Pour le sens \Rightarrow , utiliser la caractérisation $x \in E_1 \iff s(x) = x$ et $x \in E_{-1} \iff s(x) = -x$. Il suffit de décomposer les vecteurs de E dans $E_1 \oplus E_2$ pour obtenir les égalité voulues pour le sens \Leftarrow .
- 4. Pour tout $x \in E$, $\varphi(f)(x) = \frac{1}{2}(s(f(x)) + f(s(x)) = \lambda f(x)$.
- 5. Si f est un vecteur propre de φ associé à la valeur propre λ , alors $f \neq 0$ donc il existe un vecteur x appartenant à E_1 ou à E_2 tel que $f(x) \neq 0$. f(x) est alors un vecteur propre de s d'après le résultat de la question précédente.
- 6. Si P est un polynôme annulateur de φ , toute valeur propre de φ est une racine de P. Faire l'essai avec un polynôme de degré 3 qui satisfait cette condition.